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ABSTRACT

Given that the current microgrid incorporates highly connected distributed energy sources, the 
conventional model control methods do not suffice to support complex and ever-changing operating 
scenarios. This paper proposes a deep learning-based energy optimization method for microgrid 
energy management in the new power system scenarios. This article constructs a microgrid cloud 
edge collaboration architecture, which collects interactive network status data through terminal 
devices and network edge sides. A microgrid energy management model is constructed based on 
Bi-LSTM attention in the network cloud. And the model is sunk to provide real-time and efficient 
comprehensive load and power generation prediction output optimal scheduling decisions at the 
edge of the network, achieving collaborative control of microgrid light load storage. The simulation 
based on the actual available microgrid data shows that the proposed Bi-LSTM attention energy 
management model can achieve rapid analysis and optimize decision-making within 7.3 seconds for 
complex microgrid operation scenarios.
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INTRoDUCTIoN

A microgrid utilizes and consumes renewable energy, interacts with the large grid, and can improve 
the utilization level of renewable energy, creating economic and environmental benefits while ensuring 
the safety and stability of the large grid (Dashtdar et al., 2022; Muchande & Thale, 2022). However, 
as the installed capacity of distributed power sources continues to expand, the uncertainty of their 
output could impact the large power grid.
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Microgrids need to manage various power generation and consumption equipment to meet 
the requirements for stability, cost-effectiveness, and safety so as to reduce the adverse impacts of 
renewable energy on the stability of the system and the economy (Zhang et al., 2022; Alvarez et al., 
2023). Energy management of microgrids plays a vital role in ensuring economic operation, and its 
research has, therefore, become a matter of necessity and great urgency.

Currently, microgrids rely mainly on classical optimization methods, planning-based methods, 
Heuristic algorithms, etc. for energy management, which require precise mathematical model 
construction. In actual microgrids, however, wind and solar energy exhibit a high degree of 
randomness, which makes the traditional methods ill-suited for the actual situation (Ben Mansour 
et al., 2022; Nara, 2022; Zhang et al., 2020). At the same time, management of energy storage is so 
complex that it is difficult to use accurate data models and numerical calculation methods.

The emerging Internet of Things (IoT) has played an important role in the situational awareness 
of microgrids, which are gradually developing toward intelligent, information-based, and diversified 
new power systems (Altaf et al., 2022; Kandari et al., 2021). IoT devices are distributed at different 
power-equipment locations in the microgrid, achieving reliable network-state perception, providing 
complete data support for energy-scheduling optimization, and ensuring reliable monitoring, detection, 
and operation-optimization control of energy equipment (Tabassum et al., 2022; Savoli & Bhatt, 2022).

The traditional mathematical-modeling method faces challenges in extracting extensive and 
diverse microgrid-state data. In contrast, deep learning, with its complex neural network modules, 
excels at associating and extracting valuable information. Consequently, it offers a new and effective 
solution for navigating the complexities of microgrid energy-management scenarios.

Based on a multilayer network structure model, deep learning continuously trains and learns 
the power-grid dataset, constructs a complete and reliable energy-management model, and achieves 
effective assessment of network status and optimization of decision-making (Yang et al., 2022; Arul 
et al., 2021). Deep learning has allowed scholars to conduct energy-optimization research. Fang et 
al. (2021) combine reinforcement learning and deep-learning networks to design a deep Q-network 
model to achieve microgrid energy management and market-trading platforms, supporting stable 
operation. Parfenenko et al. (2023) adopt multilayer convolutional channels to optimize and improve 
the long-term and short-term memory network, improve the resource allocation of microgrids, and 
ensure energy-regulation security. Suresh et al. (2020) build an automatic encoder architecture based 
on the LSTM model and introduce an ant-colony algorithm to achieve global optimization, supporting 
the analysis of energy-optimization management in microgrids. Nahid et al. (2023) integrate a 
convolutional neural network (CNN) model and LSTM network model to achieve short-term output 
prediction for microgrid wind power. They focus on the application of deep learning in microgrid 
energy management, including the building of reliable energy-management models, optimization of 
decision-making, and integration with various deep-learning techniques to enhance performance.

However, most of the above methods are centralized decision-making management, and the 
analysis and calculation center is far from the terminal equipment, making real-time and rapid 
optimization scheduling analysis difficult to attain (Pu et al., 2021); at the same time, the presence of 
a great deal of redundancy in massive data requires energy-management models to discriminate and 
eliminate the redundant data to ensure the completeness of the model and achieve correct analysis 
of microgrid energy. For the redundant and abundant microgrid data, deep-learning models excel in 
capturing long-term dependencies and nonlinear relationships within time-series data. They can more 
precisely model the inherent complex dynamic characteristics of microgrid systems, enhancing the 
understanding of the relationships among energy generation, storage, and consumption. This deep 
learning–based approach is expected to better adapt to the complexity of microgrid systems, providing 
assistance in improving energy-utilization efficiency and system stability.

The paper presents a novel energy-management method for microgrids based on a Bi-LSTM-
Attention model within an Internet of Things architecture. It develops a cloud–edge collaborative 
architecture for microgrid energy management, leveraging IoT technology. This structure facilitates 
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efficient and real-time energy-optimization management by supporting data at the terminal, model 
construction in the cloud, and decision-making analysis at the edge. It enhances the Bi-LSTM network 
model with an attention mechanism. This approach optimizes the performance of energy-scheduling 
decisions by weighting different data features, thus capturing crucial data characteristics and avoiding 
the impact of erroneous data on analysis results.

The main innovative points are as follows:

1)  Building a cloud–edge collaborative architecture for microgrid energy management based on 
Internet of Things technology, supporting data at the terminal, building models in the cloud, 
and conducting edge decision analysis to achieve efficient and real-time energy optimization 
management;

2)  Introducing the attention module to optimize the Bi-LSTM network model, assigning weights 
to the information feature differences of different data, obtaining important data information 
features, avoiding the impact of incorrect data on analysis results, optimizing energy-dispatch 
decision-making performance, and achieving correct situation analysis and accurate unit output 
of the power grid.

MICRoGRID ENERGy-MANAGEMENT ARCHITECTURE

Current microgrid operation scenarios are complex and variable, with high real-time data interaction, 
which makes it difficult for the traditional cloud-centralized computing mode of microgrid energy 
management to respond efficiently and accurately (Cao et al., 2022; Azeroual et al., 2021).

Edge-computing mode syncs some functions of cloud computing to the edge of the network, 
realizes data processing and analysis at the data-source end, and can effectively match the friendly 
interaction and efficient response requirements of microgrid energy management and control (Karthik 
& Kavithamani, 2021; Munir et al., 2021; Verbeek & Overbeek, 2022).

This paper builds a cloud–edge collaborative microgrid energy management architecture based 
on edge computing and cloud computing, as shown in Fig. 1.

Figure 1 shows the microgrid energy management architecture for cloud–edge collaboration.
The network cloud serves as the brain of the energy-management architecture, receiving system 

datasets uploaded by the network edge layer. Based on a multilayer network model structure, the 
network cloud learns and trains the operational status and data information of the microgrid system, 
establishes a complete energy-management model, and then syncs the model to the network edge to 
achieve real-time response to terminal data (Ngassam et al., 2022; Taouche et al., 2022).

The edge side of the network serves as the central hub for the energy-management architecture. 
It plays a crucial role in facilitating data interaction and conducting model analysis. The network 
edge layer serves as the data-interaction hub between the network cloud and the terminal side, 
which can summon the terminal side network status dataset and also upload the necessary home-
interaction data for building the model to the network cloud (Lv et al., 2022; Wang et al., 2020). 
At the same time, the network edge layer adopts the data-analysis model of cloud computing center 
syncing. By amalgamating terminal interaction data at the network’s edge, the architecture provides 
energy-interaction management for microgrids. This approach attains situational awareness of the 
network status in proximity to terminals, enabling swift analysis of and decisive judgment about 
energy transfers.

The microgrid terminal equipment is equipped with various IoT sensing devices, which can 
achieve high situational awareness of the source, load, storage devices, and network status in the 
microgrid. The sensing data are uploaded to the cloud and edge sides of the network to achieve 
learning and monitoring of data-analysis models. Meanwhile, the proximity of the network edge 
data-analysis model to terminal devices enables the achievement of real-time and efficient demand 
response and load control.
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MICRoGRID ENERGy MANAGEMENT SySTEM MoDEL

To better fit the actual operation of the power grid, this article considers the mathematical model 
construction and completes the construction of microgrid energy management scenarios (Yang & 
Wang, 2020).

Microgrid Energy Model
As a common DE source in microgrids, the power of wind turbine (WT) models presents uncertainty. 
The power model P

w
 and cost model C

w
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where v
min

 is the cut-in wind speed of the fan, v
max

 is the cut-out wind speed, v
N

 is the rated 
wind speed of the fan, P

N
 is the rated power of the fan, and k

w
 is the operation and maintenance 

coefficient of the fan.
The photovoltaic (PV) power model P

p
 and cost model C

p
 are as follows:
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Figure 1. The schematic diagram of hierarchical energy management architecture for microgrids
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p p p
=  (4)

where P
st

 is the standard rated power of the PV cell, G
st

 is the light intensity under standard 
state, T

st
 is the ambient temperature under standard state, T

u
 is the ambient temperature of the PV 

cell, G
u

 is the light intensity under ambient temperature T
u

, and k
p

 is the PV operation and 
maintenance coefficient.

Energy-storage equipment consists mainly of batteries, and the mathematical model is as follows:
Charging process:
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Discharge process:
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Cost model:
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The mathematical expression for the cost of micro gas turbine power generation is as follows:

C r
M

P
Mt

Mt

Mtt

= ×
=
∑ [ ]

min

1

1

24

l
 (9)

l
Mt

Mt Mt Mt
P P P

= − + +0 0753
65

0 3095
65

0 4174
65

0 10683 2. ( ) . ( ) . ( ) .  (10)

where C
Mt

 is the fuel cost of the gas turbine at the time t , r  is the unit price of natural gas in 
the microgrid, M

min
 is the low calorific value of natural gas, P

Mt
 is the output power at the time t , 

and l
Mt

 is the power-generation efficiency.

objective Function of Microgrid Cost
When an energy-management model for microgrids is constructed, in addition to considering the 
economic costs of microgrid operation, environmental protection should also be considered (Zhang 
et al., 2021).
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Economic Costs
The purpose of microgrid clusters is to minimize the overall operating cost. Therefore, when managing 
energy on existing microgrid clusters, there is no need to take into account the initial construction 
cost of the system.

When various types of energy costs in the network are considered, the system’s economic objective 
function is constructed as follows:

min ( )
, , , ,

C C C C C
wi t pi t SOCi t Mi t

i

N

t
1

11

24

= + + +
==
∑∑  (11)

where C
1
 represents the economic cost of energy management in the microgrid, i  represents 

the number of various power sources in the network, N  represents the total number of various power 
sources, and C

wi t,
, C

pi t,
, C

SOCi t,
, and C

Mi t,
 represent the economic costs of WTs, PVs, SOC, and 

steam turbines at the time t .

Environmental Protection Costs
Given that gas turbines can produce pollutants such as SO2 and NOx during operation, environmental 
protection measures must be taken to reduce air pollution, and the mathematical model of its 
environmental protection cost is as follows (Tong & Guo, 2023):

min ( )
,

C P
i i Mi t

i

N

t
2

11

24
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where C
2
 is the environmental protection cost of the microgrid, a

i
 is the pollutant emission 

coefficient, and b
i
 is the pollutant treatment cost coefficient.

Comprehensive Cost
Comprehensive cost refers to the sum of the economic and environmental costs of microgrids. This 
article takes the comprehensive cost of microgrids as the objective function, and its expression is 
as follows:

min min( )C aC bC= +
1 2

 (13)

where C  represents the comprehensive cost of the microgrid and a  and b  represent the economic 
cost coefficient and environmental cost coefficient, respectively. Since economic and environmental 
aspects are equally important, both values are 0.5.

Constraints of Microgrid Systems
The power balance constraints of microgrids are expressed as follows:

P P P P P
Lt wt pt SOCt Mt
= + + +  (14)

As shown in (14), the microgrid system should meet the power balance constraint at any time. 
P
Lt

 represents the demand load power of the microgrid at t  time.
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The distributed power output power constraints are expressed as follows:

P P P
wp wp wp,min ,max

£ £  (15)

where P
wp,min

 and P
wp,max

 are the lower and upper limits of the active wind or PV power at the 
moment, respectively.

The energy storage battery constraints are expressed as follows:
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where E
tmin,
 and E

tmax,
 are the lower and upper limits of the output capacity of the t  time battery 

system and d  is the scheduling time period.
The output of the gas turbine unit is limited by the initial power generation and ramp rate, and 

the ramp constraints of the unit are as follows:
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where v
m down_

 and v
m up_

 are the climbing rate and a scheduling cycle T  of 1 hour is set.
The power constraints for interaction between microgrid and main grid are expressed as follows:

P P P
gird t gird t gird t,
min

, ,
max£ £  (20)

ENERGy-MANAGEMENT METHoD BASED oN 
THE BI-LSTM-ATTENTIoN MoDEL

The cloud of the microgrid network receives the network-status dataset uploaded by terminal devices, 
constructs a complete energy-management model based on the deep-learning model, and syncs it to 
the edge of the network to achieve real-time state analysis and energy scheduling.

The microgrid network data has obvious temporal attributes, and such data features can be mined 
by the recurrent neural network (RNN) model to optimize network energy allocation and scheduling.

Bi-LSTM Network Model
As a type of RNN network, LSTM can achieve effective information mining. The conventional 
LSTM models, however, often ignore the global information of historical load data during training, 
and previous data are left untreated due to the long time series of data samples.

To tackle the aforementioned issues, the Bi-LSTM network connects a forward LSTM and a 
reverse LSTM. This design enables the model to learn from the entire data sequence in both directions, 
conducting bidirectional analysis and training on sample load data. This approach proves effective 
in extracting more comprehensive information from the sample data.
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Used by the previous model, given the microgrid operation scenario, the input sequence of the 
data-analysis model X x x x

n
= [ , , , ]

1 2
  is the data sequence collected by the energy-management 

structure.
The forward implicit output state sequence is obtained through the forward LSTM:

� � ������ �
h LSTM x h
t t t
= −( , )

1
 (21)

After passing through the reverse LSTM, the reverse implicit output state sequence is obtained:

� � ������ �
h LSTM x h
t t t
= −( , )

1
 (22)

The outputs of each hidden state are then merged bit by bit, namely:

h h h s
t t t t t t
= + +κ ε

� �
 (23)

where k
t
 is the weight matrix of the forward output at t  time; the weight matrix e

t
 for reverse 

output at t  time; and the bias parameter s
t
 for the time t .

Attention Mechanism
The mechanism needs to allocate different weights based on the importance of waveforms at different 
times, so hidden layer units are added to the neural network u

d
, which is expressed as follows:

Figure 2. Bi-LSTM network structure
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u G H e
d u d u
= +tanh( )  (24)

The parameter matrix G
u

 is initialized using a uniformly distributed random method, with the 
output vector H

d
 of the previous layer as input and obtained u

d
 through the activation function, and 

e
u

 is the weight offset of the hidden layer unit.
Input the transposed dot product results with the weight matrix G

a
 into the softmax activation 

function f
softmax

 for normalization processing to obtain the attention vector a
d

:

a f u G
d d

T
a

=
softmax

( , )  (25)

Connect a fully connected layer with the same dimension and classification number in the data 
analysis network, and use the softmax classification network to generate a one-dimensional vector 
y  of the class probability distribution of the interval ( , )0 1  as the final output of the neural network, 
which is expressed as follows:

y f G H e
y d y

= +
softmax

( )  (26)

where G
y

 is the weight of the fully connected layer and e
y

 is the weight offset of the fully 
connected layer.

The overall structure of the Bi-LSTM neural network with attention mechanism (Bi-LSTM-
Attention) is shown in Fig. 3. With its training data coming from the edge or terminal side of the 
microgrid network, the input layer learns and constructs a neural network. The Bi-LSTM layer extracts 
the features of each segment of the microgrid network state, and the attention mechanism layer assigns 
weights to construct a complete and reliable energy-scheduling model.

In Fig. 3, X x x x
n

= [ , , , ]
1 2

  represents the sample data sequence of the microgrid and St
f

 and 
St
b

 represent the cell state.

Energy-Management Methods for Microgrids
The microgrid energy scheduling model based on a deep Bi-LSTM neural network is trained with 
massive historical data to construct a mapping relationship between the microgrid-operation scenarios 
and the scheduling-decision results. The mature data-analysis model is synced to the edge of the 
network to achieve energy-optimization analysis, and the corresponding scheduling-decision results 
are mapped in real-time response to terminal uploaded data.

The Bi-LSTM-Attention energy-management model and the detailed decision-making process 
are shown in Fig. 4.

As can be seen from Fig. 4, the deep-learning model for the optimization scheduling of microgrids 
is composed of a Bi-LSTM-Attention neural network. The input of the overall model is the monitoring 
data of the microgrid terminal equipment; the output of the overall model is the scheduling-decision 
result.

The Bi-LSTM-Attention energy-management model is deployed to the network edge, enhancing 
its proximity to terminal power equipment. The accumulation of historical input and output data 
facilitates the continuous and rapid refinement of the deep-learning model. This capability enables 
effective handling of historical scheduling-decision outcomes, leading to a continuous improvement 
in the accuracy and efficiency of microgrid-optimization scheduling.
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This article uses the Adam optimization algorithm to train the Bi-LSTM-Attention energy-
management model. The mean square error (MSE) is selected as the loss function. The expression 
of MSE and the weight update formula of the Adam algorithm are as follows:

MSE
T

y y
t t

t

T

= −
=
∑1 2

1

( ˆ )  (27)

σ σ
δ

ε
t t

t

t
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where y
t
 is the actual value of the microgrid and ŷ

t
 is the predicted value of the model, s

t
 is 

the weight parameter of the network to be updated, d  is the learning rate, e  is the smoothing 
parameter, q̂

t
 and p̂

t
 are the first-order moment mean and second-order moment mean of the gradient, 

respectively, and g
1
 and g

2
 are the attenuation factor.

SIMULATIoN EXPERIMENTS

The simulation experiment was run on a high-performance computer, where the hardware running 
environment is an Intel Core processor, the GPU is NVIDIA GTX 5000, the software running 

Figure 3. Structure of Bi-LSTM-attention neural network
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environment uses the Python language, and the deep-learning framework is Python. The detailed 
parameters are shown in Table 1.

Experimental Dataset
For an example analysis of a grid-connected microgrid system, the distributed power sources in the 
system comprise one WT, one PV, one micro gas turbine, and one battery. For ease of description, 
WT, PV, DE, and energy storage system (ESS) are used, respectively, while GRID and LOAD 
are used to represent the superior power grid and load. Fig. 5 shows the predicted values on the 
dispatch day.

The operating parameters of each distributed power supply are shown in Table 2.
The cost of polluting-gas treatment is shown in Table 3.

Comparative Analysis of Model Convergence
The collected experimental dataset is broken into a training set and a testing set at a ratio of 4:1 to 
analyze the convergence performance of the energy-management model. Fig. 6 shows the convergence 
of the Bi-LSTM-Attention energy-management model.

Fig. 6 shows the loss curve of Bi-LSTM-Attention during training. The graph shows that the 
network converges after approximately 100 iterations and demonstrates good model calculation and 

Figure 4. Bi-LSTM-attention network model and decision flow diagram
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Table 1. Protocol identification experimental parameters

Item Parameter

CPU Intel Core i9-13980HX 16GB

GPU NVIDIA GeForce GTX 5000 16GB

System Windows 10

Development Tool PyCharm 2022.2

Figure 5. Predicted daily load, WT, and PV with proposed method

Table 2. Distributed power supply operating parameters

Distributed Generation Minimum Power Value (kW) Maximum Power Value (kW)

WT 0 100

PV 0 100

ESS 0 150

DE -50 50

Table 3. Cost of polluting-gas treatment

Polluting Gas Emission Coefficient (kg/kW) Governance Costs (CNY/kg)

COx 4.25 0.32

NOx 3.15 8.495

SO2 0.38 5.858
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analysis capabilities, indicating that there has been no occurrence of fitting or underfitting during 
network training.

To test the neural network’s generalization performance, the Bi-LSTM-Attention energy-
management model was tested for root mean square error on the test set, and the values of MSE are 
shown in Fig. 7.

Fig. 7 presents the comparative results between the Bi-LSTM-Attention network and common 
network models. In comparison to traditional backpropagation networks (BP) and support vector 
machine (SVM) models, the LSTM deep neural network effectively extracts time-series features from 
the data, resulting in MSEs of 0.292, 0.219, 0.225, and 0.214 for each output variable, showcasing 
overall excellent performance. However, when compared to the LSTM network, the Bi-LSTM network, 
with its ability to bidirectionally learn time-series features, exhibits a slight overall advantage in 
performance.

Notably, the Bi-LSTM-Attention network achieves the lowest MSE for each output variable, 
namely, 0.264, 0.202, 0.221, and 0.195. Its superiority is particularly evident in the WT subdataset, 
where the MSE is only 0.264. This underscores that in wind-power datasets characterized by strong 
volatility and randomness, the attention mechanism of the Bi-LSTM-Attention network effectively 
allocates weights, minimizing the overall model error. In the other three subdatasets, the Bi-LSTM-
Attention network consistently maintains the lowest MSE, confirming its ability to maintain precision 
while demonstrating robust generalization performance, thus making it suitable for energy-optimization 
management in diverse and complex datasets.

optimization Analysis
The Bi-LSTM-Attention energy-management model optimizes energy scheduling by learning and 
training microgrid operation status data. The output results of the distributed power supply are shown 
in Fig. 8.

Fig. 8 reveals that there is a sufficient supply of wind-power resources during the peak hours 
of power consumption from 23:00 to 6:00, which suggests that priority is given to wind power and 
superior grid output.

Figure 6. Changes in loss function with the increase of epoch
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Figure 7. Mean square error performance with different methods

Figure 8. Distributed power output within 24 hours
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During the periods from 6:00 to 9:00 and from 13:00 to 19:00, the load demand is greater than 
the total output of wind, solar, and fuel cells, with environmental pollution costs and system operation 
costs considered, and there is sufficient sunlight during the 9:00 to 17:00 period. PV power generation 
is prioritized over gas turbine power generation in scheduling.

During the peak electricity consumption periods from 9:00 to 13:00 and from 19:00 to 23:00, the 
wind power is fully absorbed and the stability of microgrid operation is improved. PVs, batteries, and 
gas turbines simultaneously increase output, and PV output takes priority over gas turbines. PVs are 
operating at close to full capacity. When each distributed power source reaches its operating power 
limit, it will purchase electricity from the large power grid to meet the grid load demand.

Comparative Analysis of Algorithm Results
To verify the superiority of the energy-management algorithm’s performance, this article uses Nahid 
et al. (2023), Suresh et al. (2020), and Parfenenko et al. (2023) as comparative methods for simulation 
verification. All energy optimization management methods operate in the same environment.

Parfenenko et al. (2023) adopt the LSTM method to achieve energy optimization and scheduling of 
microgrids. Suresh et al. (2020) implement output optimization control based on the autoencoder long 
short-term memory (AE-LSTM) model. Nahid et al. (2023) achieve energy-management optimization 
and adjustment for microgrids based on the CNN-LSTM network model.

Table 4 shows the optimization-analysis results of different network models for the same 
microgrid scenario.

Table 4 compares the convergence performance and operating-cost calculation of different neural 
network models. The Bi-LSTM-Attention model proposed in this article has a fast convergence 
speed and can effectively calculate and analyze microgrid operation data within 7.28 seconds. The 
comprehensive cost of network operation is 3.25 × 104 yuan. Compared to the LSTM method, the 
analysis and calculation time is reduced by 0.95 seconds.

As can be seen from Table 4, Suresh et al. (2020), using the AE-LSTM method, achieve a time of 
7.92 seconds in data analysis, although the performance of the AE-LSTM attention model is similar 
to the proposed method in time, and the comprehensive cost of the AE-LSTM method is 4.59 × 104 
yuan, far more than the method presented in this article.

The key driving force behind this lies in the application of the hybrid network model method 
discussed in this article. This method facilitates situational awareness and energy scheduling for 
microgrids at the network’s edge, enabling efficient and real-time demand response. Consequently, it 
significantly enhances the speed of decision-making for network energy optimization. The bidirectional 
LSTM network model integrates historical and global data compared to the LSTM method, achieving 
data extraction and analysis methods that can quickly obtain information features of network-operation 
data uploaded by terminal devices. Additionally, the incorporation of the attention module facilitates 
systematic analysis of information features with varying levels of importance. This helps prevent 
erroneous data interference with model calculation results, ultimately enhancing the optimization 
and management capabilities of the energy-management model.

Table 4. Convergence performance of different network models

Method Convergence Time Minimum Comprehensive Cost (CNY)

Bi-LSTM-Attention 7.28 3.25×104

LSTM 8.51 4.11×104

AE-LSTM 7.92 4.59×104

CNN-LSTM 9.82 3.71×104
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CoNCLUSIoN

This article proposes an energy-management method based on the Bi-LSTM-Attention microgrid, 
which can effectively achieve optimal control of the unit output. A microgrid energy management 
architecture is constructed based on cloud–edge collaboration mode, by training and learning energy-
management models in the network cloud, and syncing complete and mature decision models to the 
network edge side to achieve real-time and efficient situation judgment and energy-scheduling analysis. 
The introduction of the attention mechanism into the Bi-LSTM model can deeply extract effective 
information from network-collected data, avoid erroneous-information interference with scheduling-
analysis results, and improve the decision-making analysis ability of the energy-management model. 
Simulation experiments have shown that the proposed Bi-LSTM-Attention model has good situational 
analysis and energy-regulation capabilities in practical complex operating scenarios.

Overall, this study presents an innovative approach to microgrid energy management that 
provides a valuable reference for other researchers seeking to enhance energy-management models 
in practical applications. The findings are also expected to drive advances in related fields, such as 
smart energy systems and edge computing, providing useful insights for future research and practical 
implementation. However, it should be noted that the model of the proposed method is trained offline, 
and although it can improve energy-regulation ability under most conditions, its regulation ability 
may be weakened under extreme conditions that occur in real time. The lightweight processing of the 
network model is also an aspect that needs attention and optimization. Therefore, the next research 
direction of this paper’s authors will focus on the online training of the Bi-LSTM-Attention energy-
regulation model and the in-depth discussion of lightweight processing.
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